英國布里斯托復合材料研究所(Bristol Composites Institute)成 立于2017年3月,以ACCIS(先進復合材料創新與科學合作)的工作為基礎。它把整個布里斯托爾大學的復合材料活動匯集在一起 ,工程學院與科學和醫學院相連。
我們的愿景是成為世界領先的復合材料研究和教育機構,將尖端 的基礎科學與強大的工業聯系進行開發和技術轉讓。ACCIS 是內 部,國內和國際合作的重點。
布里斯托復合材料研究所(ACCIS)
主任Michael Wisnom
Recent publications
Professor Michael Wisnom
Wisnom, M. R. 2016. Mechanisms to create
high performance pseudo-ductile composites.
IOP Conference Series: Materials Science and
Engineering, 139, 012***
Wisnom, M. R., Czél, G., Swolfs, Y., Jalalvand, M.,
Gorbatikh, L. & Verpoest,
in thin ply carbon/glass unidirectional laminates:
Accurate experimental determination and
prediction. Composites Part A: Applied Science
and Manufacturing, 88, 131-***
Professor Ian Bond
Heath, C. J. C., Bond,
2016. Interlocking electro-bonded laminates.
Journal of Intelligent Material Systems ***
Structures, 28, 1524-1***
Luterbacher, R., Coope, T. S., Trask, R. S. &
Bond,
carbon fibre reinforced polymer stringer runout
configurations. Composites Science and
Technology, 136, 67***
Professor Steve Eichhorn
Wanasekara, N. D. & Eichhorn, S. J. 2***
Injectable Highly Loaded Cellulose Nanocrystal
Fibers and Composites. ACS Macro Letters,
1066-1***
Zhu, C., Richardson, R. M., Potter, K. D.,
Koutsomitopoulou, A. F., Van Duijneveldt,
J. S., Vincent, S. R., Wanasekara, N. D.,
Eichhorn, S. J. & Rahatekar, S. S. 2016. High
Modulus Regenerated Cellulose Fibers Spun
from a Low Molecular Weight Microcrystalline
Cellulose Solution. ACS Sustainable Chemistry &
Engineering, 4, 4545-4***
Professor Stephen Hallett
Nixon-Pearson, O. J., Belnoue, J.-H.,
Ivanov, D. S., Potter, K. D. & Hallett, S. R.
2016. An experimental investigation of the
consolidation behaviour of uncured prepregs
under processing conditions. Journal of
Composite Materials, 51, 1911-1***
Sun, X. C. & Hallett, S. R. 2017. Barely visible
impact damage in scaled composite laminates:
Experiments and numerical simulations.
International Journal of Impact Engineering, ***
178-***
Dr Ian Hamerton
Iredale, R. J., Ward, C. & Hamerton, I.
2017. Modern advances in bismaleimide resin
technology: A 21st century perspective on the
chemistry of addition polyimides. Progress in
Polymer Science, 69, 1***
Pozegic, T. R., Anguita, J. V., Hamerton, I.,
Jayawardena, K. D. G. I., Chen, J. S., Stolojan,
V., Ballocchi, P., Walsh, R. & Silva, S. R. P. 2***
Multi-Functional Carbon Fibre Composites using
Carbon Nanotubes as an Alternative to Polymer
Sizing. Scientific Reports, 6, 37***
Dr Dmitry Ivanov
Ariu, G., Hamerton, I. & Ivanov, D. 2***
Positioning and aligning CNTs by external
magnetic field to assist localised epoxy cure.
Open Physics, 14, ***
Turk, M., Hamerton, I. & Ivanov, D. S.
2017. Ductility potential of brittle epoxies:
Thermomechanical behaviour of plasticallydeformed
fully-cured composite resins. Polymer,
120, 43***
Dr Luiz Kawashita
Al-Azzawi, A. S. M., McCrory, J., Kawashita, L. F.,
Featherston, C. A., Pullin, R. & Holford, K. M.
2017. Buckling and postbuckling behaviour
of Glare laminates containing splices and
doublers. Part 1: Instrumented tests.
Composite Structures, 176, 1158-1***
Al-Azzawi, A. S. M., Kawashita, L. F.
& Featherston, C. A. 2017. Buckling and
postbuckling behaviour of Glare laminates
containing splices and doublers. Part 2:
Numerical modelling. Composite Structures,
176, 1170-1***
Dr Byung Chul Kim
Stodieck, O., Francois, G., Heathcote, D.,
Kim, B. C., Rhead, A., Cleaver, D. & Cooper, J.
2017. Experimental Validation of Tow-Steered
Composite Wings for Aeroelastic Design.
International Forum on Aeroelasticity and
Structural Dynamics, IFASD2017,
Veldenz, L., Di Francesco, M., Atwood, S.,
Giddings, P., Kim, B. C. & Potter, K. 2***
Assessment of Steering Capability of Automated
Dry Fibre Placement through a Quantitative
Methodology. International Symposium on
Automated Composites Manufacturing,
Dr James Kratz
Hubert, P., Centea, T., Grunefelder, L., Nutt, S.,
Kratz, J., Levy, A. 2018. 2.4 Out-of-Autoclave
Prepreg Processing. In:
Zweben, C.H. (eds.), Comprehensive Composite
Materials II. vol. 2, 63-94.
Press.
Kratz, J., Low, Y. S. & Fox, B. 2***
Resource-friendly carbon fiber composites:
combining production waste with virgin
feedstock. Advanced Manufacturing: Polymer
& Composites Science, ***
Dr Matthew O’Donnell
O’Donnell, M. P. & Weaver, P. M. 2017. RAPID
analysis of variable stiffness beams and plates:
Legendre polynomial triple-product formulation.
International Journal for Numerical Methods in
Engineering, 112, 86-***
O’Donnell, M. P., Weaver, P. M. & Pirrera, A.
2016. Can tailored non-linearity of hierarchical
structures inform future material development?
Extreme Mechanics Letters, 7, ***
Professor Ivana Partridge
Cui, H., Yasaee, M., Kalwak, G., Pellegrino,
A., Partridge,
& Petrinic, N. 2017. Bridging mechanisms of
through-thickness reinforcement in dynamic
mode I&II delamination. Composites Part A:
Applied Science and Manufacturing, 99, 198-***
Partridge,
Toughen Up! In: Beaumont, P. W. R., Soutis, C.
& Hodzic, A. (eds.) The Structural Integrity of
Carbon Fiber Composites: Fifty Years of Progress
and Achievement of the Science, Development,
and Applications. Cham: Springer International
Publishing.
Dr Alberto Pirrera
Arena, G., Groh, R. M. J., Brinkmeyer, A.,
Theunissen, R., Weaver, P. M. & Pirrera, A.
2017. Adaptive compliant structures for flow
regulation. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Science,
473, 2***
Scott, S., Capuzzi, M., Langston, D.,
Bossanyi, E., McCann, G., Weaver, P. M. &
Pirrera, A. 2017. Effects of aeroelastic tailoring
on performance characteristics of wind turbine
systems. Renewable Energy, 114, 887-***
Professor Kevin Potter
Di Francesco, M., Veldenz, L., Dell’Anno, G.
& Potter, K. 2017. Heater power control for
multi-material, variable speed Automated Fibre
Placement. Composites Part A: Applied Science
and Manufacturing, 101, 408-***
Longana, M. L., Ong, N., Yu, H. & Potter, K. D.
2016. Multiple closed loop recycling of carbon
fibre composites with the HiPerDiF (High
Performance Discontinuous Fibre) method.
Composite Structures, 153, 271-***
Professor Fabrizio Scarpa
Chen, Y., Li, T., Scarpa, F. & Wang, L. 2***
Lattice Metamaterials with Mechanically Tunable
Poisson’s Ratio for Vibration Control. Physical
Review Applied, 7, 024***
Wang, S., Huang, L. J., Geng, L., Scarpa, F.,
Jiao, Y. & Peng, H. X. 2017. Significantly
enhanced creep resistance of low volume fraction
in-situ TiBw/Ti6Al4V composites by architectured
network reinforcements. Scientific Reports***
40823.
Dr Mark Schenk
Filipov, E. T., Liu, K., Tachi, T., Schenk, M. &
Paulino, G. H. 2017. Bar and hinge models for
scalable analysis of origami. International Journal
of Solids and Structures, 124, 26***
Dr Valeska Ting
Doan, H. V., Fang, Y.,
Sartbaeva, A., Hintermair, U. & Ting, V. P.
2017. Controlled Formation of Hierarchical
Metal-Organic Frameworks Using CO2
-Expanded
Solvent Systems. ACS Sustainable Chemistry &
Engineering, 5, 7887-7***
Edler, K. J., Bowen, C. R., Mintova, S. &
Burrows, A. D. 2015. Gas sensing using porous
materials for automotive applications. Chemical
Society Reviews, 44, 4290-4***
Dr Carwyn Ward
Blok, L. G., Kratz, J., Lukaszewicz, D.,
Hesse, S., Ward, C. & Kassapoglou, C. 2***
Improvement of the in-plane crushing response
of CFRP sandwich panels by through-thickness
reinforcements. Composite Structures, 161, 15***
Hartley, J. W., Kratz, J., Ward, C. &
Partridge,
and loop length on the crushing behaviour of
tufted sandwich specimens. Composites Part B:
Engineering, 112, 49***
Professor Paul Weaver
Kordolemis, A. & Weaver, P. M. 2***
Geometric-material analogy for multiscale
modelling of twisted plates. International Journal
of Solids and Structures, 110, 24***
Wu, Z., Raju, G. & Weaver, P. M. 2***
Optimization of Postbuckling Behaviour of
Variable Thickness Composite Panels with
Variable Angle Tows: Towards “Buckle-Free”
Design Concept. International Journal of Solids
and Structures.
多功能復合材料和新型微結構
先進的復合材料提供了獨特的機會來創造具有附加功能的結構材 料,例如用于感測,自修復以及結合新型纖維和納米材料的新材 料結構。
設計,分析和失敗
基礎實驗研究提供了物理和力學行為的理解,為分析方法預測性 能提供了基礎,以及設計和制造最佳結構的工具。
智能結構
復合材料使材料科學,機械工程,計算機科學
電話:氣工程,數值 建模和優化等傳統學科的整合成為高性能的智能結構。
復合材料的加工和表征
材料微觀結構和加工特性的知識使得能夠開發用于制造復合部件 的增強和新穎的方法。
我們想向您介紹參與創新與科學先進復合材料博士培訓中心的主 要人員。
CDT主任與管理委員會合作開展運營職責。該委員會包括研究和教 學協調員,項目經理,專職CDT講師,CDT經理,研究生學生管理 員和當選學生代表。
我們的學生都是來自各個學科(如航空航天工程,生物化學,化 學,土木工程,材料科學,數學,機械工程,物理學和紡織工程)的學術天才畢業生。學生團體分成10至16名學生。
我們的表現,質量和戰略方向每年都會通過外部咨詢委員會的會 議進行審查,外部咨詢委員會由外部學者和行業合作伙伴等主要 利益相 我們的咨詢委員會為CDT和我們的學生的持續發展作出了 寶貴的貢獻。
項目主管來自ACCIS內部以及大學內的其他合作部門,以及來自其 他大學和我們工業合作伙伴的合作者。
先進的復合材料科學中心(ACCIS)
http://www.**istol.ac.uk/composites/
composites-cdt**[ta]**stol.ac.uk
+44(0)117 33 1***
EPSRC創新與科學
先進復合材料博士培訓中心先進復合材料創新與科學合作(ACCIS)
布里斯托大學
女王大學步行
布里斯托爾BS8 1TR
管理委員會
Michael Wisnom教授 ACCIS主任; 航空航天結構教授
+44(0)117 33 1***
m.wisnom**[ta]**stol.ac.uk
導向員
Paul Weaver教授 輕量結構教授
+44(0)117 33 1***
paul.weaver**[ta]**stol.ac.uk
學校的負責人
Ian Bond教授 女王工程學院院長; 航天工程教授
+44(0)117 33 1***
ipbond**[ta]**stol.ac.uk
副主任和研究協調員
Ian Hamerton博士 聚合物和復合材料閱讀器
+44(0)117 33 1***
ian.hamerton**[ta]**stol.ac.uk
教學協調員
Ian Farrow博士 飛機結構設計高級講師
+44(0)117 33 1***
ian.farrow**[ta]**stol.ac.uk
專門的CDT講師
德米特里•伊萬諾夫博士 復合材料制造講師
+44(0)117 33 1***
dmitry.ivanov**[ta]**stol.ac.uk
Alberto Pirrera博士 復合結構講師
+44(0)117 33 1***
alberto.pirrera**[ta]**stol.ac.uk
Valeska Ting博士 智能納米材料閱讀器
+44(0)117 33 1***
v.ting**[ta]**stol.ac.uk
行政
Sarah Hallworth女士 CDT經理
sarah.hallworth**[ta]**stol.ac.uk
Kathinka Watts夫人 研究生管理員(CDT)
+44(0)117 33 1***
kathinka.watts**[ta]**stol.ac.uk
凱蒂•德魯里太太 ACCIS項目經理
+44(0)117 33 1***
katie.drury**[ta]**stol.ac.uk